Increasing Lipophilic Character

Judd Fitzgerald
Product Manager – Western US

What are we really talking about?

Making your herbicide applications work better.....

- Post emergent broadleaf & brush applications.
- Things you already know, but should be reminded of.

Short History of 2,4-D

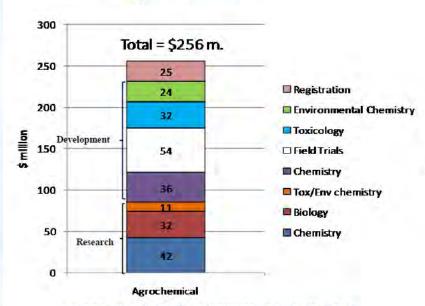
- Invented in 1945 by British for destroying enemy food source.
- First commercially sold in 1946.
- First selective herbicide to target Dicots (Broadleafs)
- Basic mode of action works like cancer to the plant disrupts growth hormones so plant grows uncontrollably resulting in collapse of structure.
- Manufactured by Monsanto & Dow in early years.
- Worlds 5th most used herbicide today.

Other Products Invented in 40's

The Slinky

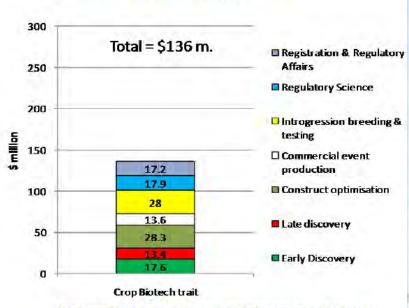
The Ball Point Pen

The Microwave Oven



The Challenge:

CPDA Conference

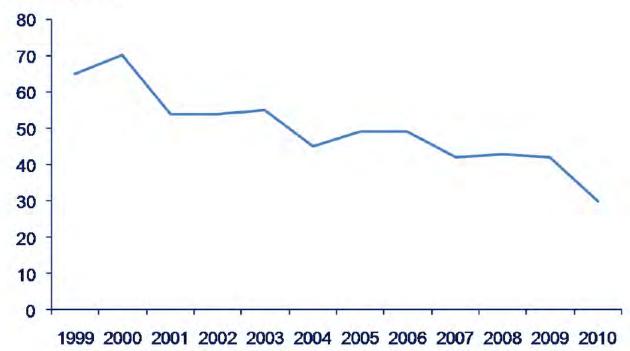

Cost of Bringing a New Product to Market

Agrochemical

Agrochemical costs based on 2009 Crop Life America/ECPA study

Plant biotechnology trait

Plant biotechnology trait costs based on 2011 Crop Life International study



The Limitations:

CPDA Conference

Agrochemical Active Ingredients in Development

a.i.s in development

Back To The Future:

Forms of 2,4-D?

Amine

- High water solubility.
- Low solubility in oils & waxes.
- Slow absorption into plant leaves.
- Low volatility.
- Does not mix well with Liquid N.
- Low probability of crop injury when temperature exceeds 85 degrees.

Ester

- Low water solubility.
- High solubility in oils & waxes.
- Quick absorption into plant leaves.
- High volatility.
- •Mixes easily with Liquid N.
- •High probability of crop injury when temperatures exceed 85 degrees.

Welcome Free Acid Technology!

- Introduced in 2000 (15 years old)
- It took 55 years to create this technology!
- 66% to 88% more potent than Ester or Amine form
- 50% AI needed to produce = results to old 2,4-D
- Low Volatility
- Low Odor
- Speedy Absorption
- Unique to Helena Chemical only!
- Making the 3rd form of 2,4-D
 - Amine, Ester & Free Acid

Enhanced Efficacy Herbicide Formulations – "Working" Definition

- Herbicide formulations that are designed to improve the activity of the active ingredient and/or correct spray application problems
- Also referred to as "in-can" adjuvants, coformulants, and "loaded" formulations (half loaded / fully loaded etc)

Advantages of Enhanced Efficacy Herbicide Formulations

- Eliminates or supplements need for tank-side adjuvants
- Assures adjuvant inclusion
- Reduces the chance for using incorrect adjuvants or rates
- Regulatory simplicity (eliminates need for separate adjuvant registrations)

Herbicide Products With Enhanced Efficacy Formulations - Basics

VASTLAN_{TM}

Functions Provided by Commercial EE Pesticides

- SELECT MAX
- POAST PLUS
- GARLON 4 ULTRA
- ENLIST (2,4-D)
- ENGENIA (dicamba)
- EXTEND MAX
- VASTLAN
- VISTA XRT

MSO Ester + NIS

MSO ester + buffer

MSO solvent / adjuvant

Drift reduction agent

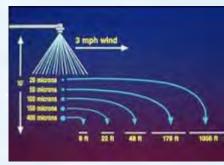
Volatility reduction aid

Volatility reduction aid

Eye irritation modifier

MSO Solvent / adjuvant

Enhanced Efficacy Herbicide Chemistry Options


Modifying A.I. for Absorption Enhancement (Ester form) Modifying A.I.
Absorption
Enhancement
(Acid form)

Modifying A.I. For Volatility / Drift reduction (Salt Forms)

Modifying A.I. for reducing Eye Irritation / damage (Mild pH Salt forms)

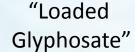
VASTLAN™ (Choline Salt) 2,4-D & Triclopyr

Enhanced Efficacy Herbicide Formulation Options ("Loaded")

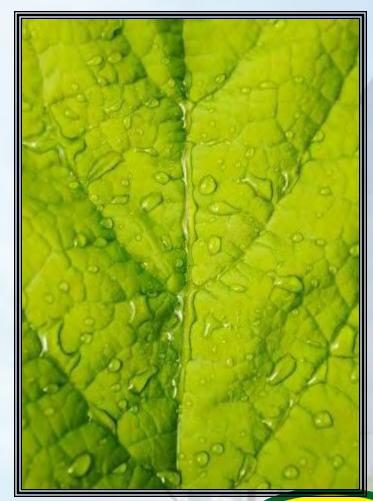
SURFACANTS
Coverage
Enhancement &
Retention

SOLVENTS
Efficacy Enhancing
Oils
(MSO, Mineral)

ABSORPTION ENHANCEMENT (Specialized Surfactants) SPRAY MIX UTILITY
Drift / Deposition,
Volatility
Reduction



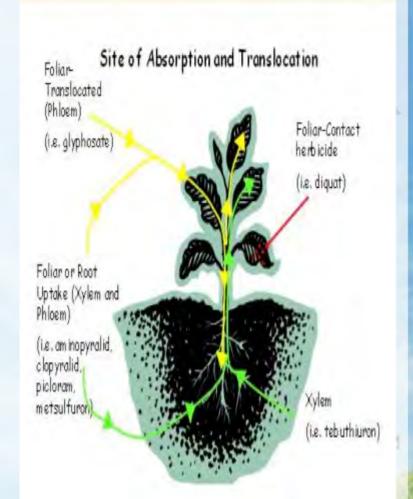
MSMA (all)


Helena Enhanced Herbicide Efficacy Formulation Product Development <u>Strategy:</u>

"Increase active ingredient lipophilic character"

Why More Lipophilicity????

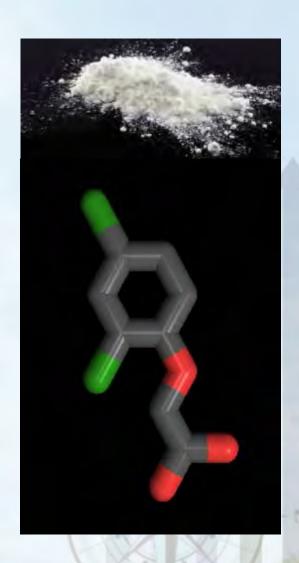
- Plant surfaces are lipophilic (oil loving)
- Water based spray applications are lipophobic (oil hating)
- Water based sprays are "repelled" by lipohilic plant surfaces
- Absorption of actives is poor and slow



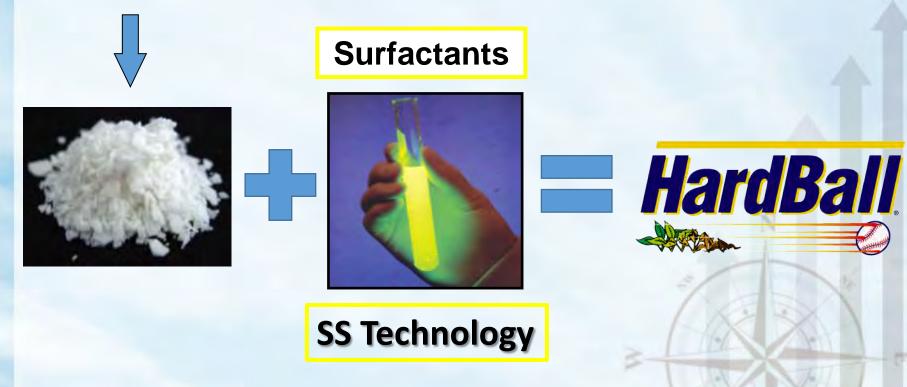
Pathways for Enhancing Auxin Herbicide Absorption

- Free acid form is more lipophilic = > movement through wax surface
- Minimizing the anionic charge reduces repulsion from anionic plant surfaces

(pH reduction)

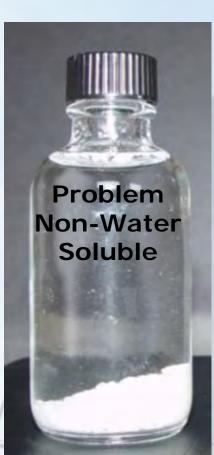

1. Maintaining spray deposit moisture

Auxin Herbicide Acids:

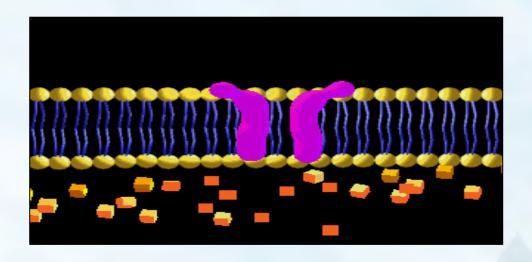

- > Lipophilic character =
- > Degree & rate of absorption
- > Resistance to wash-off
- > Compatibility
- > Activity in cool temps
- > Resistance to leaching
- > Tolerance to water quality

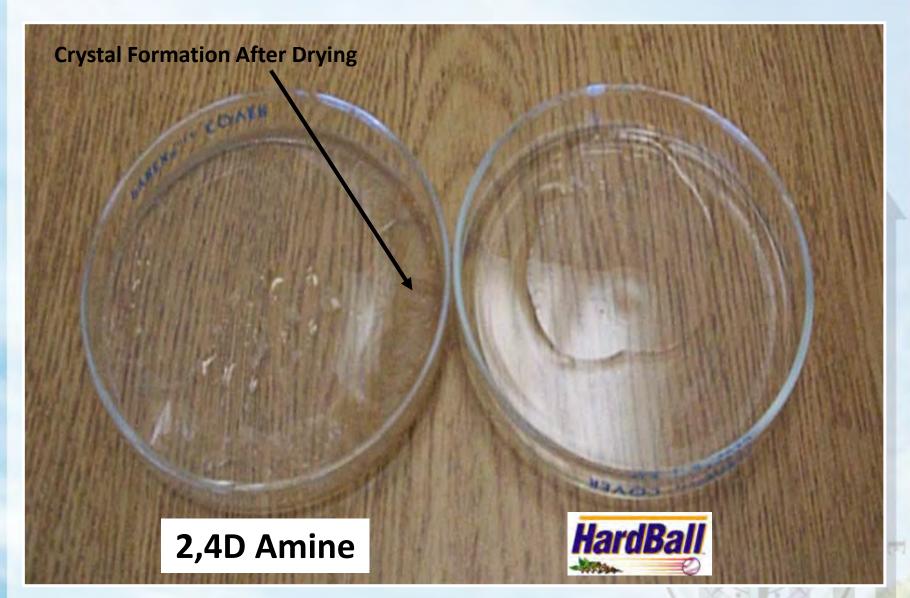
Back to the story!

2,4-D Acid

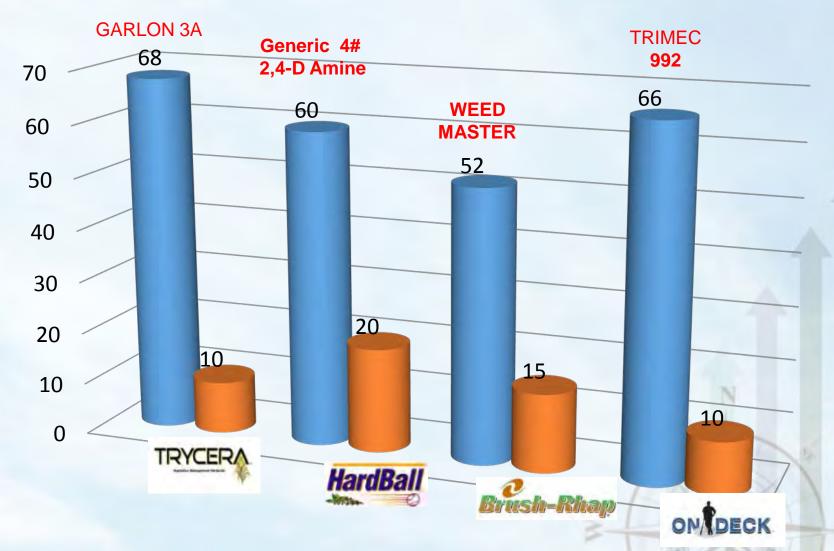

Herbicide Acid Limitation!

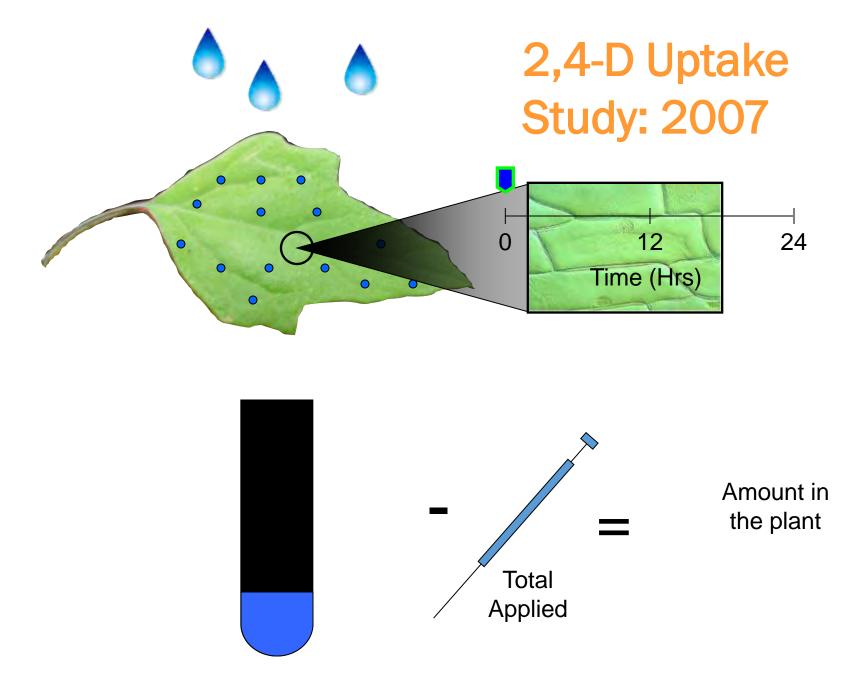
WATER INSOLUBLE


Insolubility limits formulation choices, reduces efficacy and increases application problems

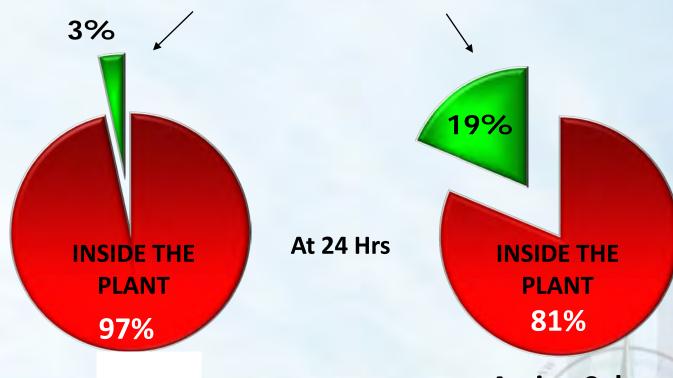

Spray deposit moisture required for absorption

Actives move from where they are Concentrated to where they are not by <u>DIFFUSION</u>


Evaporation from the spray deposit and/or crystallization of active reduces diffusion which results in lower rate & speed of absorption



Comparison of Non-Functional Ingredient Loading


Non-Functional Ingredients = Water, salts, emulsifiers, esters

Radio-Labeled Uptake

OUTSIDE THE PLANT

2,4-D Acid Formulation1 Quart/Acre

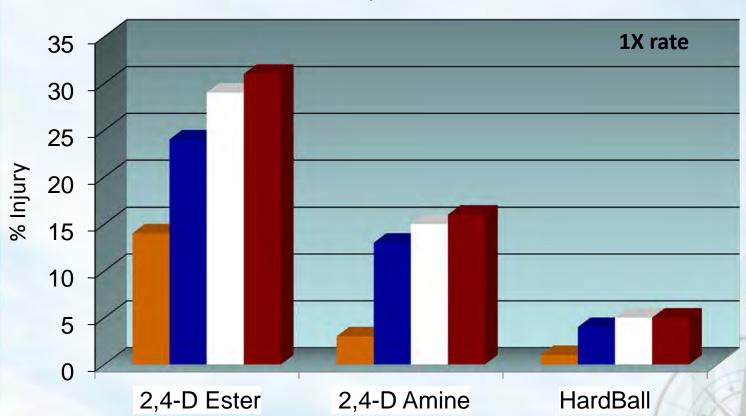
Amine Salt
1 Quart/Acre +
0.2% Surfactant

Conducted by: J. A. Zabkiewicz, Ph.D. - PPCNZ (2007)

Volatility

HardBall @ 96 Hrs

Generic Ester @ 96 Hrs


PLAN FOR SUCCESS

HardBall

Field Volatility Trial

■24 Hours

■ 48 Hours

7 Days

■ 14 Days

Plot Information:

Trial Conducted by: Dr. Jim Griffin – LSU AgCenter

Year: 2010 and 2011 Crop: Tomatoes

Location: Baton Rouge, LA

Application Information:

Treatments: Applied at (1 lb ae)

Ester - 34 oz product /A
Amine - 34 oz product /A
HardBall - 74 oz product /A

Increasing Lipophilicity allows us to get more with less!

Basic	Less Active on the ground	Helena
2,4-D LV6	2,4-D	HardBall
3# ae/acre @ 64 oz/acre	66% reduction in AI	1# ae/acre @ 64 oz/acre
		TOVCEDA
Garlon 4	Triclopyr	Salumbra Strumbad Humbrida
2# ae/acre @ 64 oz/acre	29% reduction in AI	1.43# ae/acre @ 64 oz/acre
		0
Weedmaster	2,4-D & Dicamba	Brush-Rhap
1.93# ae/acre @ 64 oz/acre	46% reduction in Al	1.05# ae/acre @ 32 oz/acre
		Termono
E-2	2,4-D, Fluroxypyr	Card
2# ae/acre @ 64 oz/acre	38% reduction in Al	1.24# ae/acre @ 48 oz/acre
		Windows.
Banvel	Dicamba	Vestere
1# ae/acre @ 32 oz/acre	29% reduction in AI	.71# ae/acre @ 24 oz/Acre
Trimec 992	2.4 D. Dissembs MCDD	AN DEAK
	2,4-D, Dicamba, MCPP	ON/DECK
1.6# ae/acre @ 64 oz/acre	48% reduction in Al	.84# ae/acre @ 32 oz/acre

Other EE Formulations:

Velossa - Hexazinone

- Alcohol free formulation
- 21% more Al per gallon
- 300 times less evaporation than Velpar L
- Non-flammable
- Low freeze point

All because we have <u>Enhanced Efficiency</u> with an adjuvant package.

VELPAR L	VELOSSA
Flammable Liquid	Non-flammable Liquid
Flammable liquid shipping classification required	No hazardous shipping classifications are required
DANGER Signal Word (eyes)	DANGER Signal Word (eyes)
Store above 32 F	Non-freezing down to 5° F
Poor reconstitution after freezing	Reconstitutes after freezing
Non-corrosive	Non-corrosive
Alcohol based formulation	Alcohol free formulation
Evaporation rate: 1.70	Evaporation rate: .005 (300 times less than VELPAR L)
2.0# / Gallon active	2.43 lbs / Gallon (21% more active per oz than VELPAR L)

The future for Helena & EE Tech:

- Higher Load of Al
 - More pounds in a gallon = lower use rates
 - Second Generation Tech
- More Al offerings
 - Pre-generic products
 - Alternative AI combos
- Signal Word designation to Caution
 - Changing Adjuvant packages to limit eye danger
 - Changing Adjuvant packages to allow aquatic use

What does this mean to you?

- New Al's are going to be less common.
- Old Al's are have been or are going to be re-engineered.
- Creating an "oil like" solution is imperative to increased herbicide efficiency.
- Acid Chemistry is here to stay and gives you more options:
 - Decreased Volatility
 - Decreased AI into environment
 - Decreased Odor
 - Increased Efficiency from decreased herbicide crystallization
 - Increased Lipophilicity
 - Continuous improvement

What does this really mean to you?

Do you pay more in the end for Enhanced Efficiency?

Yes & No

- You can pull the adjuvant from your mix.
- You can reduce your rate and keep result the same.
- Do the math (more per gallon less per Acre)
- Does your site dictate a need for EE?
- Do we have an obligation to reduce AI being environmental stewards?
- How do you determine efficiency?

Questions

Judd Fitzgerald – 303 913 2574

FitzgeraldJ@helenachemical.com

www.helenaprofessional.com

Follow me on twitter at:

JuddFitzgerald@WeedWrangler

